The completion of a specification for FCoE (T11 FC-BB-5, 2009) held great promise for unifying storage and LAN over a unified Ethernet network, and now we are seeing the benefits. With FCoE, Fibre Channel protocol frames are encapsulated in Ethernet packets. To achieve the high reliability and “lossless” characteristics of Fibre Channel, Ethernet itself has been enhanced by a series of IEEE 802.1 specifications collectively known as Data Center Bridging (DCB). DCB is now widely supported in enterprise-class Ethernet switches. Several major switch vendors also support the capability known as Fibre Channel Forwarding (FCF) which can de-encapsulate /encapsulate the Fibre Channel protocol frames to allow, among other things, the support of legacy Fibre Channel SANs from a FCoE host.
The benefits of unifying your network with FCoE can be significant, in the range of 20-50% total cost of ownership depending on the details of the deployment. This is significant enough to start the ramp of FCoE, as SAN administrators have seen the benefits and successful Proof of Concepts have shown reliability and delivered performance. However, the economic benefits of FCoE can be even greater than that. And that’s where VN2VN — as defined in the final draft T11 FC-BB-6 specification — comes in. This spec completed final balloting in January 2013 and is expected to be published this year. The code has been incorporated in the Open FCoE code (www.open-fcoe.org). VN2VN was demonstrated at the Fall 2012 Intel Developer Forum in two demos by Intel and Juniper Networks, respectively.
“VN2VN” refers to Virtual N_Port to Virtual N_Port in T11-speak. But the concept is simply “Ethernet Only” FCoE. It allows discovery and communication between peer FCoE nodes without the existence or dependency of a legacy FCoE SAN fabric (FCF). The Fibre Channel protocol frames remain encapsulated in Ethernet packets from host to storage target and storage target to host. The only switch requirement for functionality is support for DCB. FCF-capable switches and their associated licensing fees are expensive. A VN2VN deployment of FCoE could save 50-70% relative to the cost of an equivalent Fibre Channel storage network. It’s these compelling potential cost savings that make VN2VN interesting. VN2VN could significantly accelerate the ramp of FCoE. SAN admins are famously conservative, but cost savings this large are hard to ignore.
An optional feature of FCoE is security support through Fibre Channel over Ethernet (FCoE) Initialization Protocol (FIP) snooping. FIP snooping, a switch function, can establish firewall filters that prevent unauthorized network access by unknown or unexpected virtual N_Ports transmitting FCoE traffic. In BB-5 FCoE, this requires FCF capabilities in the switch. Another benefit of VN2VN is that it can provide the security of FIP snooping, again without the requirement of an FCF.
Technically what VN2VN brings to the party is new T-11 FIP discovery process that enables two peer FCoE nodes, say host and storage target, to discover each other and establish a virtual link. As part of this new process of discovery they work cooperatively to determine unique FC_IDs for each other. This is in contrast to the BB-5 method where nodes need to discover and login to an FCF to be assigned FC_IDs. A VN2VN node can login to a peer node and establish a logical point-to-point link with standard fabric login (FLOGI) and port login (PLOGI) exchanges.
VN2VN also has the potential to bring the power of Fibre Channel protocols to new deployment models, most exciting, disaggregated storage. With VN2VN, a rack of diskless servers could access a shared storage target with very high efficiency and reliability. Think of this as “L2 DAS,” the immediacy of Direct Attached Storage over an L2 Ethernet network. But storage is disaggregated from the servers and can be managed and serviced on a much more scalable model. The future of VN2VN is bright.